
1. Summary of the Euromot position

- Different engine types have substantially different technological designs and therefore need their “own” specific emission limit values.

- It is not logical that small or medium sized gas engine plants should have to meet stricter emission limits than large (≥ 50 MW) gas engine plants. Large combustion plants are regulated by IED (Industrial Emissions Directive) 2010/75/EU, which represents BAT (Best Available Technique) for the large gas fired stationary engine plants. This should be considered in ANNEX III limits of the proposal /10/.

- There is a trade-off between set NOx and unburned (such as CO, HC, etc.) emission limits from engines. A lower NOx emission tuning of the engine will result in higher unburned gaseous emissions and increased fuel consumption and vice versa. Furthermore, the different natural gas qualities available in Europe impact output and emissions from gas engines. Recognising this, the amended Gothenburg protocol gives parties to the convention the option between differing emission limit values. EU member states should be given the possibility to take the trade-offs mentioned above into consideration when setting national emission limits in accordance with the Gothenburg Protocol.
The gas fuel quality is in the proposal /10/ divided into “natural gas” and “gaseous fuels other than natural gas” with different emission limits. EUROMOT supports this as impurities in the gas fuel will limit the available emission abatement technologies.

The Annex III limit values proposed for engines can only be achieved by a bulky and expensive secondary abatement technique, note also that for engines operating on gaseous fuels other than natural gas cannot be achieved as the necessary aftertreatment systems cannot withstand the impurities contained in such fuels.

According to the Commission: “The favoured policy option is emission reduction consistent with the Gothenburg Protocol...” in Commission document /1/. However, many important aspects of the newly amended Gothenburg Protocol /6/ are missing e.g. the adopted crucial flexibility mechanisms are absent and interpretation of emission limits is different. Consequences are explained in detail below. It should be noted that UNECE Gothenburg emission limits in Annex V are only for new stationary engines. Existing plant limits shall not be set stricter than for new plants.

(Amendment proposals on both options in detail provided on the next pages)

For more information please contact:

European Association of Internal Combustion Engine Manufacturers – EUROMOT
Dr Peter Scherm, +49 69 6603-1354, peter.scherm@euromot.eu
EU Transparency Register ID number: 6284937371-73
2. Annex II amendment proposal for emission limit values for new gaseous fuelled engines (15 vol-% \(O_2\) reference) in gaseous mode

a) Annex II, Part 2: Emission limit values for new medium size combustion plants (text proposed by the Commission)

2. Emission limit values (mg/Nm\(^3\)) for engines and gas turbines

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type of installation</th>
<th>Liquid fuels</th>
<th>Natural gas</th>
<th>Gaseous fuels other than natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SO_2)</td>
<td>Engines and gas turbines</td>
<td>60</td>
<td>---</td>
<td>15</td>
</tr>
<tr>
<td>(NO_x)</td>
<td>Engines</td>
<td>190(^1)</td>
<td>95 (^2)</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Gas turbines(^3)</td>
<td>75</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>Engines and gas turbines</td>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

\(^1\) 225 mg/Nm\(^3\) for dual fuel engines in liquid mode
\(^2\) 190 mg/Nm3 for dual fuel engines in liquid mode
\(^3\) ...

b) Annex II, Part 2: Emission limit values for new medium size combustion plants (amendment proposed by Euromot)

Emission limit values (mg/Nm\(^3\)) for new engines and gas turbines

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type of combustion plant</th>
<th>Gas Oil</th>
<th>Liquid fuels other than Gas Oil</th>
<th>Natural gas</th>
<th>Gaseous fuels other than natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SO_2)</td>
<td>Engines and gas turbines</td>
<td>-</td>
<td>120[^{4(11)}]</td>
<td>-</td>
<td>No limit or 120</td>
</tr>
<tr>
<td>(NO_x)</td>
<td>Engines [^{5a}] [^{b}]</td>
<td>190[^1]</td>
<td>190[^{1(2)a}] [^{1(2)}]</td>
<td>190[^{1(2)}]</td>
<td>190[^{1(2)}]</td>
</tr>
<tr>
<td></td>
<td>Gas turbines</td>
<td>75</td>
<td>75</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>Particulate Matter</td>
<td>Engines and gas turbines</td>
<td>-</td>
<td>50[^7]</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

www.euromot.eu
(1) 225 mg/Nm³ for dual fuel engines in liquid mode

(2) 225 mg/Nm³ for diesel engines with a total rated thermal input equal to or below 20 MW with ≤ 1200 rpm.

(3) Engines running up to 1500 hours per year may be exempted from compliance with these emission limit values in case they are applying primary measures to limit NOx emissions and meet the emission limit values set out in footnote (6).

(4) Until 01/01/2025, 590 mg/Nm³ for diesel engines being part of SIS and MIS

(5) Until 01/01/2025 in SIS and MIS […], 1850 mg/Nm³ for dual fuel engine in liquid mode and 380 mg/Nm³ in gas mode; 1300 mg/Nm³ for diesel engines with ≤ 1200 rpm equal to or below 20 MW and 1850 mg/Nm³ for diesel engines above 20 MW; 750 mg/Nm³ for diesel engines with > 1200 rpm.

(6) Until 01/01/2025, 75 mg/Nm³ for diesel engines being part of SIS and MIS

(7) Until 01/01/2025, 295 mg/Nm³ for diesel and dual fuel engines being part of SIS and MIS

(10) After 01/01/2025, 295 mg/Nm³ for diesel and dual fuel engines being part of SIS and MIS

(12) 380 mg/Nm³ for the operation of dual fuel engines if the Methane Number of the gaseous fuel is below 80

Justification

For SO2 in the column “Gaseous fuel other than natural gas”

The sulphur emission limit value for gas engines running on gaseous fuel other natural gas are too strict, much stricter than today's national laws. The sulphur level in the exhaust gas is directly dependent upon the sulphur level in the fuel, e.g. biogas has higher and varying sulphur levels compared to natural gas. Strict limits would prevent the use of biogas in certain cases.

For NOx in the column “Natural gas”

There is a trade-off between set NOx and unburned (such as CO, HC, etc.) emission limits from engines. A lower NOx emission tuning of the gas engine will result in higher unburned gaseous emissions and increased fuel consumption and vice versa. Thus, the NOx value should be increased to 190 mg/Nm³ (15 % O2) in order to have an optimal operation both in respect of emissions and fuel consumption. This should also be in line with EU 20-20-20 targets /11/. The strict value of 190 mg/Nm³ requires the application of secondary abatement techniques for a diesel engine in gas mode

For (2a, 3a, 5): NOx

In order to achieve a cost efficient balance between environment and economical aspects, additional flexibilities as included in the Gothenburg Protocol for new stationary engine need to be introduced
also into MCP. See footnotes b (“areas with restricted existing infrastructure”), c (occasional usage plants with limited yearly operation hours) d (“sudden unforeseen interruption in gas supply” case) flexibilities, see Annex I (below Table 4) of this document for more information

For (12): NOx

Natural gas quality has a big impact on engine performance regarding output and emissions. For Dual Fuel (DF) engines a higher NOx limit of 380 mg/Nm³ (15 % O₂) is thus a BAT associated limit value. For a DF type gas engine, the impact of natural gases with a Methane Number below 80 is explained in detail in UNECE document /12/.

3. Annex II amendment proposal for emission limit values for existing engines and gas turbines in gaseous mode

a) Annex II, Part 1: Emission limit values for existing medium size combustion plants (text proposed by Commission)

2. Emission limit values (mg/Nm³) for engines and gas turbines

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type of installation</th>
<th>Liquid fuels</th>
<th>Natural gas</th>
<th>Gaseous fuels other than natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>Engines and gas turbines</td>
<td>60</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Engines</td>
<td>190 (¹)</td>
<td>190 (²)</td>
<td>190 (³)</td>
</tr>
<tr>
<td></td>
<td>Gas turbines (³)</td>
<td>200</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>Engines and gas turbines</td>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

(¹) 1850 mg/Nm³ in the following cases:
(i) for diesel engines the construction of which commenced before 18 May 2006;
(ii) for dual fuel engines in liquid mode

(²) 380 mg/Nm³ for dual fuel engines in gas mode.

(³) ...
b) Annex II, Part 1: Emission limit values for existing medium size combustion plants
(Amendment proposal by Euromot)

Emission limit values (mg/Nm\(^3\)) for engines and gas turbines

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type of combustion plant</th>
<th>Gas Oil</th>
<th>Liquid fuels other than Gas Oil</th>
<th>Natural gas</th>
<th>Gaseous fuels other than natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO(_2)</td>
<td>Engines and gas turbines</td>
<td></td>
<td>120(^6)</td>
<td></td>
<td>No limit or 120</td>
</tr>
<tr>
<td>NO(_x)</td>
<td>Engines(^9)(10)(11)</td>
<td>190(^1)</td>
<td>190(^1)</td>
<td>190(^2)</td>
<td>190(^2)</td>
</tr>
<tr>
<td></td>
<td>Gas turbines</td>
<td>200</td>
<td>200</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Particulate matter</td>
<td>Engines and gas turbines</td>
<td></td>
<td>50(^{12})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) 1850 mg/Nm\(^3\) in the following cases:
(i) for diesel engines the construction of which commenced before 18 May 2006;
(ii) for dual fuel engines in liquid mode.

\(^{1a}\) 380 mg/Nm\(^3\) for dual fuel engines in gas mode

\(^{1b}\) After 01/01/2025 (> 5 MW plant), otherwise 2030, 295 mg/Nm\(^3\) for diesel and dual fuel engines part of SIS and MIS

\(^6\) Engines running up to 1500 hours per year may be exempted from compliance with these emission limit values in case they are applying primary measures to limit NO\(_x\) emissions and meet the emission limit values set out in footnotes \(^{10},\(^{11}\).\n
\(^{10}\) Engines commenced before 18 May 2006: 2000 mg/Nm\(^3\) dual fuel engine in liquid mode; 1900 mg/Nm\(^3\) for diesel engines with < 1200 rpm equal or below 20 MW and 2000 mg/Nm\(^3\) for diesel engines above 20 MW; 750 mg/Nm\(^3\) for diesel engines with > 1200 rpm.

\(^{11}\) Engines commenced after 18 May 2006: 1850 mg/Nm\(^3\) for dual fuel engine in liquid mode; 1300 mg/Nm\(^3\) for diesel engines with ≤ 1200 rpm equal to or below 20 MW and 1850 mg/Nm\(^3\) for diesel engines above 20 MW; 750 mg/Nm\(^3\) for diesel engines with > 1200 rpm

\(^{12}\) Until 01/01/2025, 75 mg/Nm\(^3\) in MIS/SIS

Justification

Existing plant limits shall not be set stricter than for new plant
4. **Annex III amendment proposal for benchmark values for more stringent emission limit values referred to in Article 5(4) in gaseous mode**

a) **Annex III. Emission limit values for medium size engine combustion plants (text proposed by Commission)**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type of installation</th>
<th>Liquid fuels</th>
<th>Natural Gas</th>
<th>Gaseous fuels other than natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Engines</td>
<td>150</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Gas Turbines</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

b) **Annex III. Emission limit values for medium size engine combustion plants (amendment proposal by Euromot)**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Type of installation</th>
<th>Liquid fuels</th>
<th>Natural Gas</th>
<th>Gaseous fuels other than natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>Engines</td>
<td>190</td>
<td>95<sup>(cd)</sup></td>
<td>190 [or delete column for “other gaseous fuel” entirely]</td>
</tr>
<tr>
<td></td>
<td>Gas Turbines</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

⁽²⁾190 for combined heat and power

Justification

For NOx in the column "Natural Gas":

Proposed NOx limits are very tight for zones with degraded ambient air quality. Gas engines running on natural gas can achieve such low emission limits only by application of efficient secondary abatement technique. The strict Gothenburg Protocol option (95 mg/Nm³ (15%O₂) offers a cost-effective solution for medium combustion equipped with “gas engines” where application of SCR is not commercially viable. The strict value of 95 mg/Nm³ already requires the application of secondary abatement techniques for dual fuel (DF) and diesel engines in gas mode.

For 2: CHP

Setting a value of 35 mg/Nm³ (15 % O₂) substantially increases the total investment and operating cost for CHP plant, to the extent that these plants may no longer be attractive to operators. CHP plant can have very high overall efficiency and are a powerful tool in reducing greenhouse gas emissions. A higher more cost-effective NOx limit of 190 mg/Nm³ (15 % O₂) is proposed for this application.*
Engines running on "other gaseous fuels" (e.g. biogas):

Due to impurities in the gas, gas engines running on "other gases" cannot apply secondary abatement as the SCR will be destroyed. Therefore, the proposed limit value is technically not achievable for such engines.
It is recommended deleting the column for gaseous fuel other than natural gas so that the same limit value applies as in Annex II.
It is recommended applying the strict Gothenburg Protocol option of 95 mg/Nm³ (15% O₂) for zones with degraded ambient air quality while retaining the Annex II emission limit value of 190 mg/Nm³ (15% O₂) for CHP plants.
Alternatively, the ANNEX III should be removed from the Directive Proposal entirely.

5. Amendment proposal for a derogation for sudden interruption of supply of gas

Article 5, Emission Limit Values

Text proposed by the Commission

7. The competent authority may grant a derogation from the obligation to comply with the emission limit values provided for in paragraphs 2 and 3 in cases where a medium combustion plant using only gaseous fuel has to resort exceptionally to the use of other fuels because of a sudden interruption in the supply of gas and for this reason would need to be equipped with a secondary abatement equipment. The period for which such a derogation is granted shall not exceed 10 days except where the operator demonstrates to the competent authority that a longer period is justified.

Member States shall […] inform the Commission of any derogation granted under the first subparagraph within one month.

Amendment

7. The competent authority may grant a derogation from the obligation to comply with the emission limit values provided for in paragraphs 2 and 3 in cases where a medium combustion plant using gaseous fuel has to resort exceptionally to the use of other fuels because of a sudden interruption in the supply of gas and for this reason would need to be equipped with a secondary abatement equipment. The period for which such a derogation is granted shall not exceed 10 days except where the operator demonstrates to the competent authority that a longer period is justified.

Member States shall […] inform the Commission of any derogation granted under the first subparagraph within one month.

Justification

The Gothenburg Protocol includes such a derogation ("d" under emission table 4 of the Annex). In situations where gas supplies are interrupted some engine plants can operate on other fuels in order to ensure energy supplies. Requiring such plants to install expensive aftertreatment systems which under normal circumstances will never be used is not cost-effective and commercially not viable.
References

/4/ EMSA “The 0.1 % sulphur in fuel requirement as from 1 January 2015 in SECAs”; http://ec.europa.eu/environment/air/transport/pdf/Report_Sulphur_Requirement.pdf

/5/ http://www.airclim.org/directive-national-emission-ceilings-nec

/6/ http://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/ECE_EB_AIR_111_Add1_2_E.pdf

<table>
<thead>
<tr>
<th>Engine type, power, fuel specification</th>
<th>ELVabc (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas engines > 1 MWh</td>
<td>95 (enhanced lean burn)</td>
</tr>
<tr>
<td>Spark ignited (Otto) engines</td>
<td>190 (Standard lean burn or rich burn with catalyst)</td>
</tr>
<tr>
<td>All gaseous fuels</td>
<td></td>
</tr>
<tr>
<td>Dual fuel engines > 1 MWh</td>
<td>190</td>
</tr>
<tr>
<td>In gas mode (all gaseous fuels)</td>
<td></td>
</tr>
<tr>
<td>In liquid mode (all liquid fuels)d</td>
<td></td>
</tr>
<tr>
<td>1 MWth–20 MWth</td>
<td>225</td>
</tr>
<tr>
<td>>20 MWth</td>
<td>225</td>
</tr>
<tr>
<td>Diesel engines > 5 MWth (compression ignition)</td>
<td></td>
</tr>
<tr>
<td>Slow (<300 rpm)/medium (300 rpm–1,200 rpm)/speed</td>
<td></td>
</tr>
<tr>
<td>5 MWth–20 MWth</td>
<td>225</td>
</tr>
<tr>
<td>Heavy Fuel Oil (HFO) and bio-oils</td>
<td>225</td>
</tr>
<tr>
<td>Light Fuel Oil (LFO) and Natural Gas (NG)</td>
<td>190</td>
</tr>
<tr>
<td>>20 MWth</td>
<td>190</td>
</tr>
<tr>
<td>HFO and bio-oils</td>
<td>190</td>
</tr>
<tr>
<td>LFO and NG</td>
<td>190</td>
</tr>
<tr>
<td>High speed (>1,200 rpm)</td>
<td>190</td>
</tr>
</tbody>
</table>

a These ELVs do not apply to engines running less than 500 hours a year.
b Where Selective Catalytic Reduction (SCR) cannot currently be applied for technical and logistical reasons like on remote islands or where the availability of sufficient amounts of high quality fuel cannot be guaranteed, a transition period of 10 years after the entry into force of the present Protocol for a Party may be applied for diesel engines and dual fuel engines during which the following ELVs apply:
- Dual fuel engines: 1,850 mg/m³ in liquid mode; 380 mg/m³ in gas mode.
- Diesel engines — Slow (<300 rpm) and medium (300 rpm–1,200 rpm)/speed: 1,300 mg/m³ for engines between 5 MWth and 20 MWth and 1,850 mg/m³ for engines > 20 MWth.
- Diesel engines — High speed (>1,200 rpm): 750 mg/m³.
c Engines running between 500 and 1,500 operational hours per year may be exempted from compliance with these ELVs in case they are applying primary measures to limit NO\textsubscript{x} emissions and meet the ELVs set out in footnote b.
d A Party may derogate from the obligation to comply with the emission limit values for combustion plants using gaseous fuel which have to resort exceptionally to the use of other fuels because of a sudden interruption in the supply of gas and for this reason would need to be equipped with a waste gas purification facility. The exception time period shall not exceed 10 days except where there it is an overriding need to maintain energy supplies.

2 The reference oxygen content is 15%.
EUROMOT is the European Association of Internal Combustion Engine Manufacturers. It is committed to promoting the central role of the IC engine in modern society, reflects the importance of advanced technologies to sustain economic growth without endangering the global environment and communicates the assets of IC engine power to regulators worldwide. For more than 20 years we have been supporting our members - the leading manufacturers of internal combustion engines in Europe, USA and Japan - by providing expertise and up-to-date information and by campaigning on their behalf for internationally aligned legislation. The EUROMOT member companies employ all over the world about 200,000 highly skilled and motivated men and women. The European market turnover for the business represented exceeds 25 bn euros. Our EU Transparency Register identification number is 6284937371-73.

http://www.euromot.eu – your bookmark for IC engine power worldwide

Our members are:

DIESEL AND GAS ENGINE MANUFACTURERS

- AGCO POWER
- CATERPILLAR ENERGY & TRANSPORTATION (GROUP)
- CNH INDUSTRIAL (GROUP)
- CUMMINS
- DAIMLER
- DEUTZ
- DOOSAN
- GE POWER, WATER & TRANSPORTATION (GROUP)
- HATZ
- ISUZU MOTORS GERMANY
- JCB POWER SYSTEMS
- JOHN DEERE
- KOMATSU ENGINES
- LIEBHERR
- LOMBARDINI-KOHLER GLOBAL POWER (GROUP)
- MAN GROUP
- MITSUBISHI TURBO & ENGINE EUROPE
- MOTEURS BAUDOUIN
- ROLLS-ROYCE POWER SYSTEMS (GROUP)
- SAME DEUTZ-FAHR
- SCANIA
- STEYR MOTORS
- VOLKSWAGEN POWER SYSTEMS
- VOLVO CONSTRUCTION EQUIPMENT
- VOLVO PENTA
- WÄRTSILÄ
- YANMAR (GROUP)
- ZETOR

SMALL SI ENGINE MANUFACTURERS

- BRIGGS & STRATTON
- DOLMAR
- EMARK
- HONDA EUROPE
- HUSQVARNA (GROUP)
- KAWASAKI EUROPE
- KOHLER GLOBAL POWER GROUP
- SOLO
- STIHL
- TORO EUROPE
- WACKER NEUSON
- YAMABIKO (GROUP)